Modeling, Simulation and Control of the Walking of Biped Robotic Devices—Part III: Turning while Walking
نویسندگان
چکیده
In part II of this group of papers, the control of the gait of a biped robot during rectilinear walk was considered. The modeling approach and simulation, using Kane’s method with implementation leveraged by Autolev, a symbolic computational environment that is complementary, was discussed in part I. Performing turns during the walk is technically more complex than the rectilinear case and deserves further investigation. The problem is solved in the present part III as an extension of part II. The robot executes a rectilinear walk on a local reference frame whose progression axis is always tangent, and its origin performs the involute of the path curve. The curve is defined by its curvature (osculating circle) and center of curvature (evolute) along the path. Radius of curvature and center can change continuously (in practice at every sampling time). For postural equilibrium, Center of Gravity and Zero Moment Point (COG/ZMP) follow the same preview reference proposed for rectilinear walk (cogRe fx (t), ̇ cogRe fx (t), cogRe fy(t), ̇ cogRe fy(t)). The effect of the turn on the sagittal plane is negligible and is ignored, while on the frontal plane it is accounted for by an offset on COG reference to compensate for the centrifugal acceleration. The body trunk and local frame rotation, and the generation of the references on this moving frame of the free foot trajectory during the swing deserve attention.
منابع مشابه
From Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کاملAnalysis of 3D Passive Walking Including Turning Motions for the Finite-width Rimless Wheel
The focus of studies in the field of passive walking has often been on straight walking, while less attention has been paid to the field of turning motions. In this paper, the passive motions of a finite width rimless wheel as the simplest 3D model of passive biped walkers was investigated with a focus on turning motions. For this purpose, the hybrid model of the system consisting of continuous...
متن کاملModelling, Simulation and Control of the Walking of Biped Robotic Devices—Part I : Modelling and Simulation Using Autolev
A biped robot is a mechanical multichain system. The peculiar features, that distinguishes this kind of robot with respect to others, e.g., industrial robots, is its switching nature between different phases, each one is the same mechanics subject to a different constraint. Moreover, because these (unilateral) constraints, represented by the contact between the foot/feet and the ground, play a ...
متن کاملModeling, Simulation and Control of the Walking of Biped Robotic Devices, Part II: Rectilinear Walking
This is the second part of a three-part paper. It extends to the free walking results of a previous work on postural equilibrium of a lower limb exoskeleton for rehabilitation exercises. A classical approach has been adopted to design gait (zero moment point (ZMP), linearized inverted pendulum theory, inverse kinematics obtained through the pseudo-inverse of Jacobian matrices). While several id...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کامل